A SVM-Based Ensemble Approach to Multi-Document Summarization

نویسندگان

  • Yllias Chali
  • Sadid A. Hasan
  • Shafiq R. Joty
چکیده

In this paper, we present a Support Vector Machine (SVM) based ensemble approach to combat the extractive multi-document summarization problem. Although SVM can have a good generalization ability, it may experience a performance degradation through wrong classifications. We use a committee of several SVMs, i.e. Cross-Validation Committees (CVC), to form an ensemble of classifiers where the strategy is to improve the performance by correcting errors of one classifier using the accurate output of others. The practicality and effectiveness of this technique is demonstrated using the experimental results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A survey on Automatic Text Summarization

Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...

متن کامل

A New Pairwise Ensemble Approach for Text Classification

Text classification, whether by topic or genre, is an important task that contributes to text extraction, retrieval, summarization and question answering. In this paper we present a new pairwise ensemble approach, which uses pairwise Support Vector Machine (SVM) classifiers as base classifiers and “input-dependent latent variable” method for model combination. This new approach better captures ...

متن کامل

A Pairwise Ensemble Approach for Accurate Genre Classification

Text classification, whether by topic or genre, is an important task that contributes to text extraction, retrieval, summarization and question answering. In this paper we present a new pairwise ensemble approach, which uses pairwise Support Vector Machine (SVM) classifiers as base classifiers and “input-dependent latent variable” method for model combination. This new approach better captures ...

متن کامل

Multi-Document Summarization via Discriminative Summary Reranking

Existing multi-document summarization systems usually rely on a specific summarization model (i.e., a summarization method with a specific parameter setting) to extract summaries for different document sets with different topics. However, according to our quantitative analysis, none of the existing summarization models can always produce high-quality summaries for different document sets, and e...

متن کامل

Noise reduction through summarization for Web-page classification

Due to a large variety of noisy information embedded in Web pages, Web-page classification is much more difficult than pure-text classification. In this paper, we propose to improve the Web-page classification performance by removing the noise through summarization techniques. We first give empirical evidence that ideal Web-page summaries generated by human editors can indeed improve the perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009